o(r, 7), v(r), $(P, T)  are the given functions;

D is the problem domain;

S is the surface bounding D;

B is the domain congruent with D;

Q2 is the surface congruent with S;

F is the surface exterior to B;

n is the outward normal to a surface;

P is the point on the surface S;

a,c, B,y are the parameters;

G = ry, T — 1), is the Green's function for unbounded space;
O(r — 1y, T— 1) is the Dirac delta function;

qalr, 7 is the function, nonvanishing only on the surface F,
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LINEAR DEFINING EQUATIONS IN HEAT-CONDUCTION
THEORY WITH FINITE THERMAL-PERTURBATION
VELOCITY

V. L. Kolpashchikov and A, I. Shnip UDC 536.2:536.7

A modification to the general theory of heat conduction with finite thermal-perturbation velocity,
in which the linear defining equations are not thermodynamically forbidden is proposed.

In [1] Gurtin and Pipkin developed a general thermodynamic theory of heat conduction assuming propaga-
tion of the thermal perturbations at finite velocity. In the framework of this theory, they considered linear de-
fining equations which lead to a linearized heat-conduction equation — in fact, an equation of hyperbolic type.
However, the relation between the heat flux itself and the internal energy in this theory is not satisfied by the
linear defining equations considered in [1], and therefore the resulting linearized heat-conduction may only be
used with great inaccuracy, as a very rough guide. ‘

The present paper outlines a modification of the Gurtin— Pipkin theory such that the linear defining equa-
tions (in fact, in terms of new independent variables) are not thermodynamically forbidden.

In the Gurtin— Pipkin theory the defining equations specify at some point x and time t the values of the free
energy ¥, entropy 7, and heat flux q, in terms of the temperature at time t, the total history of the temperature
31:, and the total history of the temperature gradient Et

b=P ¥, g,
n=1(, 9, ¢) @
a=q(® o, g)

The total histories 3 and gt are defined as follows:
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¥ (s) = 'f ¥ (M) dr, gi(s)= g g' (A) da, @)
0 Q

where Jt(h) =&t —A) and gty = gt — A) are the histories of the temperature and the temperature gradient,

The internal energy e(t) is determined from the relation
e)=vO)+OnBO=e® ¥ ¢ 3)

Also in [1], the norm on the set of functions 3t(-) and gt(-) which is the region of definition of the func-
tionals in Eq, (1) was introduced, using some influence function h(+). In terms of this term, the Frechet con-
tinuity and continuous-differentiability conditions were formulated the required number of times for the func-
tionals in Eq. (1). Under these assumptions Gurtin and Pipkin showed that Eq. (1) satisfies the second law of
thermodynamics in the form of the Clausius—Duhem inequality

. 1 '
P9+ —O;—g-q<0 )

if and only if

a) the entropy and flux are completely debermined from the free-energy functional using the relation

R, B )= — Dy (0, B, B, )
(8. B, g = — 95,8, ¥, 1), (6)

b) for all the permitted #(-) and g(.) the following dissipation relation holds
By b (8, B, 1O — ()17 + 5,3 (0, B, glg) >0, )

where Dy 1s the dlfferentlatlon operator with respect to ¢4, 04 and dg are the Frechet derivatives with respect
to &t and g , respectively; 17 is a function whose value is 1 for all s€[0, =),

Operating on the left-hand and right-hand sides of Egs. (3) and (5) with the operator 6g and on Eq, (6) with
the operator Dy and combining Egs.(5), (6), and (3) gives (since 0g and Dy are commutative)

. o i ol R o
D30, B gy—2 L&D 5 %0. 3 W, ®

Gurtin and Pipkin showed that for isotropic material the defining equations for the internal energy and
heat flux should take the form

e(t)=e, +cO () + ?a' ©) ¥ (s)ds, ®)
8

e =KL (10)

where e, is the measured internal energy; c(s) and k(s) are relaxational functions; ¢ = const is the instantaneous
heat capacity. It is quickly evident that Egs. (9) and (10) do not satisfy Eq. (8) for any nonzero heat flux and
hence are thermodynamically forbidden,

In [2] the thermodynamic theory of heat conduction for solids with memory was somewhat modified by
introducing a nonstandard set of thermodynamic variables. This gave a certain advantage in the analysis of
the linear defining equations. It appears that an analogous modification in the case of the present theory would
give an additional benefit: The linear defining equation would no longer be forbidden.

The independent variables chosen are the inverse temperature* 6 = 1/& the total history of the inverse
temperature 8t(-), and the fotal history of the inverse temperature gradient Gt(:). I addition, a new inde-
pendent thermodynamic variable is introduced: the thermodynamic potential &, defined as follows:

@;_}:ee—n. (11)

*Sometimes called the "coldness."
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By analogy with Eq. (1), the defining equations for this case are
O=d@®, & G,
e=e@® 0, G, (12)
q=q(0 ¥ G).
Using Eq. (11) and the definition 8 = 1/, the Clausius—Duhem inequality in Eq. (4) may be transferred to give
e —@+q-G=0. (13)
Then, retaining the assumption made by Gurtin and Pipkin with respect to the defining functionals in

Eq. (12), it may be shown, by similar arguments, that Eq. (12) satisfies the Clausius—Duhem inequality in
Eq. (13) if and only if:

a) The internal energy and the heat flux are completely determined from the thermodynamic-potential
functional @ by the relation

(8, B, G =Dy d (6, 8, G, (14)

78, 8, GY)= 8 D (6, &, GY); (15)
b) for all the permitted 8 (-) and G(-) the following dissipatove inequality holds
8o (0, B, G1B* —B (1) 1) + 8D (B, &, G|G) < 0. {16)
Then the relation analogous to VEq. (8) for the present case is
Do g(8, B, GY) = dse(0, B, GI1*). 17
For an isotropic material, as above, Eq. (12) reduces to the following:
e=2,+¢0(f) + ?& () 8 (s)ds, (18)
0

q= ? E (s)G' (s) ds,
o

(19)

which is always consistent _with Eq. (17), in contrast to what was found with Eqs. (18), (19), and (10).

Substituting Egs.(18) and (19) into the energy equations leads to a linearized heat-conduction equation of
hyperbolic type, which is of the same form as the Gurtin— Pipkin equation but does not violate thermodynamics.
It is only necessary to remember that this equation, unlike the Gurtin—Pipkin equation, describes the inverse-
temperature field.

There is another difference between the modified theory and the Gurtin— Pipkin theory. In Gurtin—Pipkin
theory, the calculation of the temperature-wave velocity gives (see Egs. (6.8) and (6.9) in [1])

U=UVTFm 4 m), (20)
where
u, =1/ =2, 1)
c

n is the normal to the wavefront, and

R _ - {22)
a=-—38,q(8 ¥ ¢ginl"),
¢ = Dge(9, 8, g, {23)
1 - = = ) ’
= —— I8, e®, 9, ginl*) + —g-ni.

m= o Pt ® PEiniD (24)

o
s,
3



For the modified theory, the temperature-wave velocity is again described by Eqs. (20) and (21), but in this
case the definitions of @, ¢, and m are as follows:

a=— 6Gg(0, &, Gin 1), (25)
¢c=Dge(® &, @), (26)
m= 8,e(0, B, Gn 1%). @7)
of
In [1], Eqgs. (20)~(24) formed the basis for the conclusion that if
Se(0, ¥, g1 =0 (28)

for all n, the temperature-wave velocity in the direction of g was larger than in the direction —q. Thus, this
velocity is not simply a property of the material but is a function of the process. As follows from Egs. (25)~
(27), this effect is absent from the modified theory and, when only Eq. (28) is satisfied (if, for example, the
material has a center of symmetry), U = U,. The velocity U, may be regarded in the normal sense as a char-
acteristic of the material since calculations of U retaining only the main linear terms give a constant which
depends solely on the temperature.

It should be emphasized that the difference of principle between the two theories are confirmed by experi-
mental verification. :
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HEAT TRANSFER IN SEMIINFINITE REGION WITH
VARIABLE PHYSICAL PARAMETERS

Yu. I. Babenko UDC 536.24.02:517.9
A method is proposed for the determination of the nonsteady temperature field in a semiinfinite
region with variable physical properties.

The heating of a semiinfinite region with variable physical parameters in the coordinate and the time,
for zero initial conditions, may be described by the following equation

[_SF_ a‘j; Ly, t)]T:O, 0<r<oo, 0<t< oo, ¢

Thet =To(®; Tl=w=0; Tl =0.
It is required to find the temperature field T(x, t).

_ Earlier, for an analogous problem, only the temperature gradient at the boundary (6T/6x)x= o was found
i1, 2].

The total solution of Eq. (1) will be sought in the form of a functional series

T=Nc, (61 D2 e~ 2T (1), (2

n=0
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